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Stability of a vortex with a heavy core

By DENIS SIPP1, DAVID FABRE1†,
SEBASTIEN MICHELIN1,2 AND LAURENT JACQUIN1

1ONERA, 8 rue des Vertugadins, 92190 Meudon, France
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This paper examines the stability of swirling flows in a non-homogeneous fluid.
Density gradients are shown to produce two distinct kinds of instability. The first
is the centrifugal instability (CTI) which mainly affects axisymmetric, short-axial-
wavelength eigenmodes. The second is the Rayleigh–Taylor instability (RTI) which
mainly affects non-axisymmetric, two-dimensional eigenmodes. These instabilities are
described for a family of model flows for which the velocity law V (r) corresponds to
a Gaussian vortex with radius 1, and the density law R(r) corresponds to a Gaussian
distribution characterized by a density contrast C and a characteristic radius b. A
full map in the (C, b)-plane is given for the amplification rate and the structure of
the most amplified eigenmode. For small density contrasts (C < 0.5), the CTI occurs
only for b > 1 and the RTI for b � 0.8. On the other hand, for high density contrasts
(C > 0.5), a competition between the two kinds of instabilities is observed. From a
fundamental point of view, the nature of the instability depends on the local values
of G2 = −r−1V 2R−1dR/dr and the Rayleigh discriminant Φ = r−3d(r2V 2)/dr . CTI
occurs whenever G2 >Φ somewhere in the flow. For RTI, a necessary condition is
that G2 > 0 somewhere in the flow. By an asymptotic analysis, we show that this
condition is also sufficient in the limit b → 0, C → 0. This asymptotic analysis also
confirms that shear has a stabilizing effect on RTI and that this instability is strictly
analogous to the standard RTI obtained in the case where light fluid is situated below
heavier fluid in the presence of gravity.

1. Introduction
Stabilizing mechanisms associated with rotation usually make a vortex very resistant

to radial momentum diffusion. The present paper considers possible density variation
effects to achieve this. If density effects were significant, vortex control by means of
injection of heated or cooled air could be considered for example in application to
aircraft wakes. The precise goal of this paper is to evaluate the potential of such
density effects to produce linear instabilities.

We focus on a non-homogeneous fluid which is driven by the equations of motion,
incompressibility and continuity:

ρ(∂t u + u · ∇u) = −∇p, ∇ · u = 0, ∂tρ + u · ∇ρ = 0, (1.1)

where u, p and ρ stand for the velocity, pressure and density. In cylindrical coordinates
(r, θ, z), let u, v and w be the radial, azimuthal and axial components of the
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Figure 1. (a) Non-homogeneous swirling flow. (b) Non-homogeneous shear flow under the
action of gravity. The grey levels show the density field. The same notation has been chosen
on purpose in both settings to show their analogies. (c) Overview of instabilities in the case
where Φ > 0.

velocity field. As shown in figure 1(a), we choose a steady basic flow of the form
[u, v, w, p, ρ]= [0, V (r), 0, P (r), R(r)] where V (r) and R(r) are two given functions
which characterize the azimuthal velocity and the density of the vortex. The pressure
P (r) equilibrates the centrifugal force F = Rr−1V 2er so that P ′ = Rr−1V 2 where
the prime denotes differentiation with respect to the radial coordinate r . We are
particularly interested in the case where a vortex has a heavy internal core so that
R′ < 0 for all radii.

In the framework of non-homogeneous swirling flow stability, extensive work has
already uncovered two important quantities: the Rayleigh discriminant Φ = 2r−1V Ξ ,
where Ξ =V ′ + r−1V is the vorticity of the basic flow, and G2 = −r−1V 2R−1R′. Note
that −G2 corresponds, if R′ > 0, to the square of the buoyancy frequency, which is ana-
logous to the standard buoyancy frequency (or Brunt–Väisälä frequency) with gravity
replaced by the centrifugal acceleration r−1V 2 (see § 4 for more details on the analogy).

Figure 1(c) gives an overview of the instabilities that may occur in such flows as a
function of G2. We have the following results:

(i) If G2 >Φ for some radius r , which corresponds to a very heavy vortex, Eckhoff
(1984) showed by a Wentzel–Kramers–Brillouin (WKB) analysis that the flow is
subject to centrifugal instability (CTI). Le Duc & Leblanc (1999) showed that a
classical normal mode analysis with axisymmetric perturbations retrieves the results
of the WKB analysis in the limit of small axial wavelengths. This case will be
addressed in § 3.

(ii) If G2 � Φ for all radii, Leibovich (1969) and Howard (1973) have shown that
the flow field is stable to all axisymmetric perturbations.

(iii) If 0 <G2 <Φ , which corresponds to a heavy vortex, there exists no general
sufficient condition for instability. This case will thoroughly be analysed in § 4. An
interesting result has been shown by Gans (1975) in the case of rigidly rotating flows
where V ∼ r: if G2 is slightly positive then the flow is unstable to two-dimensional
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non-axisymmetric perturbations. This result may also be inferred for all G2 > 0 from
the WKB analysis of Eckhoff (1984) and the work of Le Duc (2001). We will show
in this paper that this instability is actually a Rayleigh–Taylor instability (RTI).

(iv) If G2 = 0, i.e. in the case of homogeneous flows R′ =0, Drazin & Reid (1981)
showed that a necessary condition for two-dimensional non-axisymmetric instability
is that the vorticity distribution Ξ presents an extremum somewhere, i.e. Ξ ′ =0. This
is a Kelvin–Helmholtz instability (KHI) which induces the rollup of annular vorticity
concentrations. In the case of non-homogeneous flows with R′ �= 0, this necessary
condition for instability does not hold anymore. Nevertheless, one may infer from
the stability characteristics of a vortex sheet associated with two uniform streams of
different velocities and densities in the presence of gravity (see Drazin & Reid 1981)
that non-homogeneities have a destabilizing (respectively stabilizing) effect on KHI
if G2 > 0 (respectively G2 < 0).

(v) If G2 < −G2
W for all radii with G2

W = (V ′ − r−1V )2/4, Lalas (1975), Warren
(1975) and Fung (1983) showed that the flow is stable to all disturbances. Note that
this result is analogous to the sufficient condition for stability established by Howard
(1961) which states that a standard shear flow in the presence of gravity is stable
if the local Richardson number is everywhere greater than or equal to 1/4. The
case G2 < −G2

W corresponds to a very light vortex where the stabilizing effect due to
negative values of G2 prevails over all instability mechanisms, especially KHI. Note
that in the case of rigidly rotating flows, for which no KHI exists, G2

W = 0. The present
sufficient condition for stability associated with the sufficent condition for instability
established by Gans (1975) and Eckhoff (1984), which was mentioned above, shows
that a rigidly rotating flow is unstable if and only if G2 > 0 somewhere in the flow.

Note that the results of Eckhoff (1984), Le Duc & Leblanc (1999), Howard (1973),
Le Duc (2001), Lalas (1975) and Warren (1975) were established in a fully compressible
framework.

The main objective of this paper is to study the stability of a family of basic
flows described in § 2 which represents a vortex with a heavy internal core. We are
particularly interested in the competition that may exist between CTI presented in
§ 3 and RTI described in § 4. Note that the present article only deals with the linear
regime of the perturbations. The nonlinear regime of the RTI has been addressed
by Coquart, Sipp & Jacquin (2004) and Joly, Fontane & Chassaing (2004) by direct
numerical simulations.

2. The basic flows and the perturbations
We study the linear stability of a family of basic flows with two parameters C

and b. The velocity field consists of a Lamb–Oseen vortex of circulation Γ =2π and
unitary radius. The density distribution exhibits a Gaussian-type peak in the centre
of the vortex with amplitude s and width b:

V = r−1[1 − exp(−r2)], R = 1 + s exp(−r2/b2). (2.1)

Instead of the amplitude s, we use the density contrast parameter C = (Rmax − Rmin)/
(Rmax +Rmin) = s/(2+ s) to characterize the density distribution. We focus on the case
0 < C < 1, which corresponds to a heavy core.

We superpose on the basic flow (2.1) small-amplitude perturbations of the form
(u, v, w, p, ρ) = [u(r), v(r), w(r), p(r), ρ(r)] exp[i(kz + mθ − ωt)] where k is the real
axial wavenumber, m the azimuthal wavenumber and ω the complex frequency.
Linearization of the governing equations (1.1) around the basic flow (2.1) leads to the
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following equation:
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where ψ(r) = ru(r), l = mr−1, p2 = k2 + l2, Σ = −ω + lV and H 2 = G2 − Φ . Equation
(2.2) along with the boundary conditions ψ(0) = ψ(∞) = 0 constitutes an eigenvalue/
eigenvector problem for ω/ψ(r). Writing the perturbation equation in this form
allows us to identify the different physical mechanisms involved: terms I and II
in equation (2.2) are respectively responsible for CTI and RTI whereas term III is
a coupling term which is zero for axisymmetric (m = 0) or two-dimensional (k = 0)
perturbations.

The solutions to the eigenvalue/eigenvector problem (2.2) may be obtained
numerically using a shooting method. Integration is achieved with a classical fourth-
order Runge–Kutta scheme. At the approach to critical points rc satisfying Σ(rc) = 0
in the complex r-plane, the integration path is deformed according to the criterion
given by Lin (1955). Preliminary results using this method were presented by Fabre
et al. (2003).

3. Centrifugal instability
We first focus on three-dimensional (k �= 0), axisymmetric (m = 0) eigenmodes.

Equation (2.2) therefore reduces to

(r−1R)−1(r−1Rψ ′)′ − k2ψ − k2ω−2H 2ψ = 0. (3.1)

This equation and its boundary conditions form a classical Sturm–Liouville
eigenvalue/eigenvector problem. Hence, following Bender & Orszag (1978), if H 2 > 0
somewhere in the flow, then the flow is unstable. Note that the quantity H 2 can also

be written H 2 = −(Rr3)
−1

(Rr2V 2)′, so that for H 2 to be positive, the function Rr2V 2

has to decrease somewhere in the flow.
In the limit of short-wave perturbations (k � 1), it is possible to construct analytical

eigenvalues/eigenvectors following the procedure given by Bayly (1988) and Le Duc
& Leblanc (1999). First, we suppose that H has a positive maximum at some given
radius r0 so that H (r0) = H0 > 0, H ′(r0) = 0 and H ′′(r0) = H2 < 0. Then, we introduce
the scalings : r = r0 +λ1/2k−1/2r̃ and ω = iH0[1− (2λ)−1k−1ω̃] with λ=[−H0(4H2)

−1]1/2.
If we let k → ∞, equation (3.1) becomes at leading order

d2ψ/dr̃2 + (ω̃ − r̃2/4)ψ = 0 (3.2)

with ψ → 0 at r̃ = 0 and r̃ = ∞. Following Bender & Orszag (1978), this is the
quantum harmonic oscillator, so that equation (3.1) exhibits the following eigenvalues/
eigenvectors in the limit k → ∞:

ωn = iH0[1 − (2λ)−1k−1(n + 1/2)], ψn = Hen(r̃) exp(−r̃2/4) (3.3)

where Hen is the Hermite polynomial of degree n [He0(x) = 1, He1(x) = x,
He2(x) = x2−1, . . .]. Note that n corresponds to the number of nodes of the eigenmode
ψn. In the case of homogeneous vortices, Gallaire & Billant (2003) recently proved
that CTI also exists for m �=0, k → ∞, but the instability is less amplified than in
the axisymmetric case. As will be shown in § 4.2, this conclusion also holds for
non-homogeneous vortices.
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Figure 2. CTI with (m= 0, n= 0, k → ∞): amplification rate ωi (a) and location r0 (b) of
unstable eigenmode. RTI with (m = 3, n= 0, k = 0): amplification rate ωi (c) and frequency
ωr/m (d). The dashed line in plot (c) sketches the path b = C3/2/0.2 (see also figure 3b). Most
amplified RTI eigenmode for all (m � 1, n � 0, k = 0): amplification rate ωi (e) and structure
m/n (f ). In (e) and (f ), a dotted line has been sketched above which the flow is unstable to
CTI eigenmodes whose amplification rates are higher than those of the RTI.

Figures 2(a) and 2(b) display respectively in the (C, b)-plane the iso-values of the
asymptotic amplification rate ωi =H0 and the iso-values of the radius r0 where the
eigenmode is localized. We observe that the flow is stable for small values of C

and b. There exists a non-trivial marginal stability boundary above which the flow
is unstable. In the unstable region, the amplification rate is maximum for very high
density contrasts C and small density radii b. In this case, the eigenmode is localized
in the centre of the vortex. As b increases, the amplification rates get weaker (ωi

decreases), the eigenmodes move outward (r0 increases), while flows with smaller
values of C become unstable. For b > 1, the flow is unstable for all values of C > 0.
But for C < 1/2, the amplification rates are very weak and the eigenmodes are located
outside the vortex core (i.e. r0 > 2).
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4. Rayleigh–Taylor instability
In this section we mainly consider two-dimensional (k = 0) non-axisymmetric (m �=

0) perturbations. Equation (2.2) therefore reduces to

(rR)−1(rRψ ′)′ − l2ψ − l2Σ−2G2ψ︸ ︷︷ ︸
IV

− l(RΣ)−1(RΞ )′ψ︸ ︷︷ ︸
V

= 0. (4.1)

Unlike equation (3.1), this is not a Sturm–Liouville eigenvalue/eigenvector problem,
so that no general sufficient condition for instability can easily be established. In order
to interpret this equation, we first draw an analogy with the standard case of a non-
homogeneous flow under the action of gravity. For this, let us consider the Cartesian
(x, y, z) setting shown in figure 1(b) which represents a stratified shear flow of velocity
u = V (x)ey and density R(x) with the gravity force F = −Rgex . This basic flow may
undergo two-dimensional instability, i.e. the so-called RTI, if light fluid is below heavy
fluid. If we compare figures 1(a) and 1(b), we see that the cylindrical and Cartesian
problems are analogous, the centrifugal force playing the role of the gravity force.
Note that if the grey levels represent high values of density, then the two sketched
configurations are unstable: heavy fluid inside light fluid in a vortex is equivalent to
light fluid below heavy fluid in a standard shear flow with gravity. In both cases, the
unstable situation corresponds to the force (centrifugal or gravity) directed towards
the light fluid.

In order to go deeper in the analogy, let us focus in the Cartesian setting on two-
dimensional perturbations of the form e−iωteilyψ(x) where ψ is the streamfunction
perturbation, ω the complex frequency and l the wavenumber in the y-direction – we
deliberately use the same notation as in the cylindrical setting. Yih (1965) showed that
the linearization of the incompressible non-homogeneous Euler equations around this
basic flow yields the following eigenvalue/eigenvector problem:

R−1(Rψ ′)′ − l2ψ − l2Σ−2G2ψ︸ ︷︷ ︸
IV

− l(RΣ)−1(RΞ )′ψ︸ ︷︷ ︸
V

= 0 (4.2)

where the prime denotes differentiation with respect to the vertical coordinate x,
Σ = −ω+lV , Ξ =V ′ is the vorticity of the basic flow and G2 = gR−1R′. Note that −G2

corresponds to the square of the buoyancy frequency if R′ < 0. If V = 0, equation (4.2)
reduces to

R−1(Rψ ′)′ − l2ψ − l2ω−2G2ψ︸ ︷︷ ︸
IV

= 0 (4.3)

which yields the prototype RTI in the Cartesian setting (Rayleigh 1883). In these
equations, term IV is responsible for the RTI and term V represents the action of
shear, which may in particular produce KHI.

If we come back to the cylindrical problem, we can see that equation (4.2) is the same
as equation (4.1) without curvature effects. Also, equation (4.3) is analogous, without
curvature effects, to equation (4.4) which will be derived below from equation (4.1)
in the asymptotic case b → 0 and C → 0, and which yields the prototype RTI in the
cylindrical setting. This unambiguously shows that the instabilities described in the
following are of the RTI type: they are produced by the centrifugal force which takes
advantage of the flow inhomogeneities to destabilize the flow. Also, one may infer
that term IV in equations (4.1) and (4.4) is responsible for the RTI whereas term V
represents the action of shear. The latter may have two effects. First, as mentionned
before and in the Introduction, it may be responsible for KHI. But, as the Lamb–
Oseen azimuthal velocity profile does not present any extremum in the vorticity
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distribution for r > 0, we do not expect this instability to appear here. Secondly, and
this is the main point, we will show below that shear has a stabilizing effect on RTI.

4.1. Numerical results obtained with the shooting method for k = 0

For all azimuthal wavenumbers m � 1, several unstable eigenmodes are generally
obtained, and are labelled by the integer n= 0, 1, 2, etc. which represents the number
of nodes of the eigenfunction ψ(r) in the radial direction. We first focus on the
case m = 3. For this case, the most amplified eigenmode corresponds to n= 0. The
corresponding amplification rate ωi and oscillation rate ωr are displayed, respectively,
in figures 2(c) and 2(d). This particular eigenmode is stable for small density contrasts
C and high density radii b. A non-trivial marginal stability boundary exists below
which the eigenmode is unstable. In the unstable region, the amplification rate
becomes stronger as the density contrast C increases: as will be shown in § 4.3, the
heavier the vortex, the faster the instability. The instability also becomes stronger as
the density radius b decreases, which shows that maximum instability occurs when the
density gradient is located in a region where the azimuthal velocity of the basic flow is
shear-free, i.e. in a rigidly rotating flow. Hence, shear has a stabilizing effect on RTI.
Note that the real part ωr of the complex frequency plotted in figure 2(d) satisfies
0 < ωr/m < 1. This is in accordance with various semi-circle theorems established by
Lalas (1975), Warren (1975) and Fung (1983). This also shows that, on the marginal
stability boundary, the neutral eigenmodes exhibit a critical layer at the radius rc

where Σ(rc) = 0, i.e. V (rc)/rc =ωr/m.
For larger azimuthal wavenumbers (m > 3), the results are qualitatively similar

to those presented above, and the most amplified eigenmode is always the primary
one (n= 0). On the other hand, for m =1 and m = 2, in some regions of the (C, b)-
plane, higher-order eigenmodes (n= 1, 2, . . .) were found to be more amplified than
the primary one (n = 0). In figures 2(e) and 2(f ), we have respectively sketched
the iso-values ωi and structure of the most unstable eigenmode over all azimuthal
wavenumbers m � 1 and all n � 0. The amplification rate follows the same general
trends as described for m = 3. Concerning the structure of the most amplified
eigenmode, we notice that large-scale eigenmodes (m = 1, n =0, 1, 2) and (m =2, n = 0)
are selected near the marginal stability boundary. When b decreases, eigenmodes
become highly oscillatory in the azimuthal direction (high values of m) but remain
large scale in the radial direction (n= 0). The area b < 0.2 has been left blank since
the most unstable eigenmodes have very high azimuthal wavenumbers (m � 8) which
have not been computed. In § 4.3, a dedicated asymptotic analysis for b → 0 will
thoroughly explain the structure of the unstable eigenmodes in this area.

We can note that competition between CTI and RTI exists only for high values
of C. In fact, for small values of C and b, the basic flow only has RTI whereas for
small values of C and high values of b only CTI exists. In the case of high values of
C, one has to carefully compare the numerical values of both amplification rates. In
figures 2(e) and 2(f ), we have therefore sketched a dotted line above which the flow
is unstable to CTI eigenmodes whose amplification rates are higher than those of
the RTI eigenmodes. This behavior may be explained in the following way. For the
RTI, a necessary condition is G2 > 0, which means that the density has to decrease
with r somewhere in the flow. However this condition is not sufficient, except (see
§ 4.3 for proof) in the case C → 0 and b → 0, where the density gradient is located
in the centre of the vortex which is shear-free. For larger values of b, the shear has
a stabilizing effect on the instability. On the other hand, for the CTI, a necessary
and sufficient condition is H 2 > 0, which means as shown before that the quantity
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Figure 3. (a) Amplification rates ωi as function of axial wavenumber k for various eigenmodes
(m= 0, 1, 2, n= 0) in the case (C = 0.8, b =1). (b) Amplification rates C−1/2ωi as a function of
C along the dashed line in figure 2(c) for various eigenmodes (m = 3, 8, 12, 16, 20, n= 0, k =0).

Rr2V 2 must decrease somewhere in the flow. The quantity r2V 2 is strongly growing
within the vortex core, but is nearly constant outside the vortex core, for r � 1. This
explains why for moderate density contrasts C, this instability only occurs for b > 1,
i.e. when the density gradient is located outside the vortex core. For small values of
b, this instability may also take place, but a very large density contrast C is required
for the density gradient to centrifugally destabilize the flow. As a result, the flow is
strictly stable only for C = 0 and a small region in the (C, b)-plane which roughly
corresponds to the rectangle 0.8 <b � 1 and 0 � C < 0.5.

4.2. Numerical results obtained with the shooting method for k �= 0

Up to now we have investigated only pure two-dimensional (k = 0), non-axisymmetric
(m � 1) RTI. Here we study how the unstable modes evolve if we consider non-zero
values of the axial wavenumber k. We distinguish different cases. If we choose C and b

for which only RTI and no CTI exists, e.g. (C = 0.5, b =0.5), then (not shown here) the
amplification rates of all RTI eigenmodes are maximum for k = 0, decrease with k and
vanish for values of k of order 1. Note that an analogous result exists in the case for
which only CTI and no RTI exists, e.g. (C = 0.3, b = 1.5). Therefore, we may conclude
that three-dimensionality (respectively two-dimensionality) generally has a stabilizing
effect on RTI (respectively CTI). The results are different if we choose C and b for
which both RTI and CTI exist. For example, we show in figure 3(a) the amplification
rate of various eigenmodes as a function of k for the case C = 0.8, b = 1. For k = 0, the
most amplified mode corresponds to (m = 2, n =0), in accordance with figure 2(f ).
As k increases, it appears that the amplification rate first decreases, reaches a minimum
for k = 3, then increases again before converging towards a constant value as k → ∞.
In this limit, the most amplified mode is the axisymmetric CTI mode (m =0, n = 0),
and its amplification rate is in accordance with the asymptotic prediction (3.3). We
have also considered the eigenmode corresponding to (m = 1, n = 0). For k = 0, this
eigenmode is attenuated. But, as k increases, this eigenmode becomes unstable and
even more amplified than the (m =2, n = 0) eigenmode for k > 2.

These results indicate that, as k increases, the non-axisymmetric modes progressively
change from an RTI nature to a CTI nature. This is consistent with the results of
Gallaire & Billant (2003), who showed that in the homogeneous case, all eigenmodes
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are of the CTI type in the short-wavelength limit, the eigenmodes with m �=0 being
sub-obtimal CTI eigenmodes. This conclusion is found to remain valid in the non
homogeneous case.

4.3. Asymptotic analysis of the case m �= 0, k =0, C → 0 and b → 0

In this section, we perform an asymptotic stability analysis in the case where the RTI
amplification rates are maximum, i.e. b → 0. We have to restrict the analysis to the
case C → 0 to keep a tractable formalism. We will show that equation (4.1) reduces
to a Sturm–Liouville problem which yields a sufficient condition for instability.

We introduce the parameter ε = C1/2 which is supposed to be small. All lengths
are re-scaled by ε: b = εb̄ and r = εb̄r̄ . This means that the relevant length scale is
no longer the azimuthal velocity length scale but instead the width of the heavy core
b. The complex frequency of the eigenmode is composed of an oscillating part m

and an amplification rate which scales on the density contrast ε: ω =m + εω̄. This
means that the azimuthal phase velocity of the perturbation dθ/dt = ωr/m is equal
to 1 which is the rotation rate V/r in the centre of the vortex. The real part of the
complex frequency ωr = m therefore reflects the convection of the perturbation by the
rigidly rotating flow.

Introducing these scalings into (4.1), we obtain the following classical Sturm–
Liouville eigenvalue/eigenvector problem at leading order in ε:

r̄−1(r̄ψ ′)′ − l̄2ψ − l̄2ω̄−2Ḡ2ψ︸ ︷︷ ︸
IV

= 0 (4.4)

with l̄ = mr̄−1 and the prime denoting differentiation with respect to r̄ . Note that a
similar equation was obtained by Gans (1975) in the case of a strictly uniform rotation.
Here G2 = ε2Ḡ2 so that Ḡ = 2r̄ exp(−r̄2/2). Comparing this equation to (4.1), we can
see that the shear term V has disappeared. This stems from the facts that (i) the basic
vorticity field Ξ becomes constant in the centre of the vortex and (ii) the density
variations remain weak since G2 is of order ε2. From this, we may conclude that the
flow field (2.1) is unstable for small values of C and b if G2 > 0 somewhere.

In the limit of high azimuthal wavenumbers m � 1, we can construct analytical
eigenvalues/eigenvectors localized radially in the vicinity of a maximum of the
function Ḡ. For this, we first note that the function Ḡ has a positive maximum at r̄0 = 1
with Ḡ(r̄0) = Ḡ0 = 2e−1/2, Ḡ′(r̄0) = 0, Ḡ′′(r̄0) = Ḡ2 = −4e−1/2. Then, we introduce the
scaling r̄ = r̄0(1+λ1/2m−1/2r̃) and ω̄ = iḠ0[1− (2λ)−1m−1ω̃] with λ= [−Ḡ0(4r̄2

0 Ḡ2)
−1]1/2.

If we let m → ∞, equation (4.4) leads to the quantum harmonic oscillator (3.2) at
leading order, which exhibits the following eigenvalues/eigenvectors:

ωn = m + iεḠ0[1 − (2λ)−1m−1(n + 1/2)], ψn = Hen(r̃) exp(−r̃2/4) (4.5)

To validate this asymptotic analysis, we show in figure 3(b) the re-scaled ampli-
fication rate ε−1ωi = C−1/2ωi obtained by the shooting method along the path sketched
by a dashed line in figure 2(c). This path is characterized by the equation b̄ = C/0.2
or b = C3/2/0.2. Several curves corresponding to various azimuthal wavenumbers
m = 3, 8, 12, 16, 20 have been shown as a function of C in figure 3(b). We observe
that all curves converge, as C → 0, towards a constant value, which increases with m,
and which tends towards the value Ḡ0 = 2e−1/2 predicted in (4.5) as m → ∞.

This asymptotic analysis shows that for all m � 1, there exists an infinite number
of unstable eigenmodes, labelled by the number of nodes n of the eigenmode, and
whose amplification rate decreases with n and increases with m. These results are
strictly valid only for C → 0 and b → 0. But as shown in § 4.1, on the whole this
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structure remains valid for higher values of C and b. It is important to note that each
unstable eigenmode found in § 4.1 and characterized by the azimuthal wavenumber
m and the number of nodes n is continuously linked as C → 0 and b → 0 to the
(m, n) eigenmode presented in (4.5). The action of shear represented by term V in
equation (4.1) has a strong impact on the azimuthal structure of the most amplified
eigenmode: whereas high azimuthal wavenumbers are favoured as b → 0, only m = 1
and m =2 eigenmodes appear near the marginal stability boundary in figure 2(f ).
This shows that the stabilizing effect of shear is more efficient in the case of high
azimuthal wavenumbers.
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